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Abstract

We present a new method to solve incompressible thermal flows and the transport of scalar quantities. It is a finite volume scheme for
unstructured meshes whose time discretization is based upon the fractional time step method. The governing equations are discretized usin
a collocated, cell-centered arrangement of velocity and pressure. The solution variables are stored at the cell-circumcenters. This schem
is convergent, stable and allows computing solutions that does not violate the maximum principle when it applies. Theoretical results and
numerical properties of the scheme are provided. Predictions of Boussinesq fluid flow, flow past a cylinder and heat transport in a cylinder

are performed to validate the method.
0 2003 Elsevier SAS. All rights reserved.
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1. Introduction, mathematical model

In this paper we consider the following mathematical
model. When the density of the fluid is constant, the flow
in a domains2 is governed by the Navier—Stokes equations:

V.-v=0 1)
ov

E—i—v'(v@v)—i—VP—V(vVv):f (2)
where

e P =p/p, P being the kinematic pressurethe density
and p the pressure;

e v =pu/p, v being the kinematic viscosity and the
dynamic viscosity;

o fis a source term such as buoyancy force.
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When the specific heat, of the fluid is considered con-
stant? a model for the transport of heat by the fluid is:

oT 3)

= +V.-(VT)—=V(@VT)=s
where o = % is the thermal diffusivity,k the thermal
conductivity ands a source term.

In order to solve these equations, they must come with
appropriate boundary conditions and, for a non-permanent
flow, a suitable initial conditin. By adjusting the source
terms to the problem being considered, this model can
be applied to many industrial problems that deal with the
transport of a scalar quantity by an incompressible flow.
Even though many stable and globally convergent schemes
are already available for specific cases such as Euler flows
or Stokes flows, only a few fulfill the following physical
principles for more general problems:

o local conservation of mass and scalar quantities;
e numerical preservation of the maximum principle for
the scalar quantities.

2 |n general, the specific heat can be variable. We make this hypothesis
to ease the presentation of the scheme.
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Nomenclature
cp specificheat .................... kg tK-1
Ek set of interfaces surrounding volunie
Eext set of interfaces surrounding the domain
Eint set of interfaces inside the domain
m(o) measure of a general hyperplane
n unit normal vector
p PreSSUME........oveeeeennnn. kyLs2
P kinematic pressure .................... 2.5t
s general source term
t time ... S
T temperature............ K
v SPEEA. ...t .gnt
v velocity vector ....................... 8!
vk,  Speed normal to the interface of voluniés

andL ......... i it
X coordinate . ... m
Xk position associated to an eleméat ... .. .. m
Greek symbols
o diffusivity .. ... st
m dynamic viscosity ............... kgp—1.s1
v kinematic viscosity . ................. 1
2 computational domain
¢ general scalar variable
0 density . .......coveieiiiiaa, kg3
ok.. interface between elements (or volumes)

K andL
Tx,.  transmittivity of interfacerg 1 ............ m

Some numerical schemes using the cell centered finite vol-

diffusion flux is not consistent, the error does not vanish with

ume method on structured meshes satisfy these requiregrid refinement (see [2] for more details).

ments. However, only a few theoretical results are available
for unstructured triangular or tetrahedral meshes (see Gal-

louét et al. [1]). The scheme presented hereafter fulfills the
previous requirements.
There are few cell centered finite volume methods that

With a cell based gradient reconstruction using a least-
square method or the Green-Gauss theorem, it is also
possible to approximate the gradient at an interface [3,4].
However, it can lead to a wider stencil with a less favorable
weight distribution of the coefficients [5,6]. In this latter

enable the use of unstructured meshes and accurate complease, the discretization of the Laplacian can be nonpositive.

tations of the diffusion flux on non-orthogonal grids. Many
cell centered finite volume methods whose interpolation

Moreover, since the approximation ®¢ - nxy on K|L is
not necessarily equal to the approximatietve - ny in

functions are constant by control volume use the center of the cell L, this approach raises another difficulty about the

the cells as a reference position to compute the diffusion
flux. Let ¢ be a scalar variabfe X and L be adjacent con-
trol volumes whose centers akg and Xy, many computer
codes use the following approximation of the normal gradi-
ent to the cells interface:

_ L — 9k

Vo k= dg\L

whered ;. is the distance between the centers of c&lls
and L. For non-orthogonal meshes, this approximation of
the flux is not consistent, which can lead to important errors.
Even the approximation

_ ¢k
(Xx — Xr)-ng
does not lead to a consistent approximation of the flux. Fur-

thermore, there here is also a singularity whgfcx —
Xcr) - ng tends to zero. For those discretization schemes,

V¢ - ng

conservativity of the diffusion flux.

In this paper, we propose a novel approach where the so-
lution variables are located #te cell-circumcenters. This
allows computing a consistent approximation of the viscous
fluxes on non-orthogonal meshes without gradient recon-
struction. Which leads to discretization of the Laplacian that
is always positive. With an appropriate discretization of the
convective fluxes, this scheme is convergent, stable and al-
lows computing solutions that does violate the maximum
principle when it applies.

First of all, the time discretization of the Navier—Stokes
equations. will be presented. This time discretization is
based upon the fractional time step method (or projection
method) constructed in the late 60s by Chorin [7] and
Teman [8].

Second of all, the spatial discretization of the governing
equations will be detailed and some theoretical results will
be provided. This spatial discretization is an application of

accurate computations of reference quantities related to therecent theoretical results on finite volume methods published

diffusion flux (Nusselt number, drag coefficient, lift coeffi-
cient, friction coefficient, ..) can be tedious. Moreover, it
is important to point out that when the approximation of the

3 Inthis paper, when an equation or relation applies to any scalar variable
(the temperature, a concentratiamcomponent of the velocity vector), we
use the variable.

by Gallouét et al. [1] and a generalization of the recent work
of Boivin et al. [9,10]. In these papers, Boivin et al. proposed

a finite volume scheme for 2D triangular meshes and gave
an extension to two phase flows. The scheme presented here
after is a generalization of this work to 3D general meshes
where a control volume is not always a tetrahedron but can
be an assembly of tetrahedras. This section covers:
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the spatial discretization of the convective and diffusive The parameteg <10, 2] is used for relaxation and its value

fluxes, is not arbitrary. When the flow is steady, the final solution
o the discrete interpolation of scalar variables and the does not depend on its value. But the rate of convergence
diffusivity coefficients at cell interfaces, does so. We found that a value pt= % often gives the best
o the approximation of the cell gradient of a scalar, rate of convergence. Hence this value is the one retained for
o application of boundary conditions. all computations shown in this article. When transient flows

are considered, a second order time discretization is more
Afterward, we will discuss the projection scheme used gppropriate angg must be chosen accangly. Since only
to compute a divergence-free vector field and update the permanent flows are considered in paper, we will not give
pressure field. Finally, we present the whole algorithm used more information on this matter. But the reader is invited
to solve the Navier—Stokes equations on unstructured grids. to read some papers published by Shen et al. on projection
In the second part of the article, we present some schemes [11-13] and the references [14,15] where transient

numerical results that were ustevalidate the presentfinite  flows are solved with the scheme presented in this paper.
volume scheme. These results include: Boussinesq flow in

cavity, permanent flow past a cylinder and heat transport
in a cylinder. For all test cases, convergence history toward 3, Space discretization
steady states are shown and computations on several grids

are performed. The convection and diffusion schemes are presented
thereafter. The convection scheme is simple and robust. The
diffusion scheme is based uptimeoretical results recently
published by Gallouét et al. [1]. A numerical study of this
diffusion scheme was performed in the report [17] and
some of those results were also published in [9]. Finally,
this numerical scheme has given satisfactory results for the
resolution of incompressible two-phase flows in a 2D frame

2. Timediscretization

The time discretization is semi-implicit and based upon
a variation of the projection scheme originally proposed by
Chorin [7] and Teman [8] and often called “projection-2”

scheme. Let,
L (see [10)).
9 n+l _ 4n
09| _¢og @ |
0t |1y ,y 8t 3.1. Geometrical elements

be the approximation of the temporal derivative for a scalar  The initial mesh is built with tetrahedras. For each

variable¢ and tetrahedronk, let Xx be its circumcenter. This point is
L1 allowed to be insidekX, outside K, or on its boundary.
V(t = tyt1) = A () Let ok, be the interface between tetrahediisand L,

Xk and X be the circumcenters of tetrahedr&sand L.
The straight line going through these points is always
perpendicular to the cell interfacex ; (Fig. 1). Hence,

the approximation of the velocity field at time= 7,1,
the time discretization of the governing equations is the

following: by storing the variables at these locations, we can compute
diction: a consistent approximation of the diffusive flux with a
o Prediction: minimal stencil. For this scheme, the circumcenters will be
v Ly [v(t o) g2 vVv”+1/2] the reference positions associated to the control volumes.
|-, — ot o :
"+ 3.2. Control volumes and approximation functions
+ VPn — fn (6)

Let ok 1 be the interface between tetrahedfasand L
andng ; the outward normal unit vector of the interface
ok.r of K. We then introduce the following quantity called

e Projection:

Vil yntl/2

_ n+1
- =—pV(sP™) (7)  ‘“transmittivity” (see [1]):
Pn+1 — Pn+1 _pr
) TK,L = ¥ m(;K’L) (10)
v.vitl_p (8) v = 2 ek

wherem (ok 1) is the area obg_ . All meshes can fall into
e Convection and diffusion of other scalar variables such one these four categories of meshes:
as the temperature:
9T e CategoryM;: For all interfaces k1., 7k, > 0 and for
—| V[Vt =ty )T —aVT ] =" (9) all tetrahedra%’, Xx € K. The control volumes are the

It tetrahedras.
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Xy
X %o

M1 M2

Fig. 1. Circumcenters for tetrahedr&sand L.

e CategoryMy: For all interfacesog 1, tx.. > 0, but
there exist at least one tetrahed#oror which X ¢ K.

The control volumes are the tetrahedras.

e CategoryMs: For at least one interfaess 1, k. <0,
the Delaunay condition is not fulfilled. The tetrahedras
K and L are combined together to form a new macro-
element and the control volume is the macro-element.
At least two positions Xx and X ) are associated to
this control volume.

e CategoryMy: For at least onek 1, |tx,1| — oo, at
least two circumcenters lie at the same location. The
elementsk andL are combined to form a new macro-
element and the control volume is the macro-element. / (v () -nCO dS ~ m(ok L)vk LK.+ (12)
At least two positionsXx and X;) are associated to X/
this control volume. where:

M4

Fig. 2. Mesh categories.

flux is approximated with an upwind scheme, the integral at
an interfacerg ;. is given by the following expression:

These categories are the same in 2D when triangles are e vk . is an approximation of the speed normal to the
the elements, they are shown on Fig. 2. In the 2D case, interfaceok ;, n(X) is the outward normal unit vector;
triangles in category, are such thalx = X;. Meshes o bk .= {¢K, vk,L =20
of categories\f; and M5 fulfill the Delaunay condition. + 7 ¢, otherwise

For categoriesM3 and My, tetrahedras are combined
together in a large macroahent. This racro-element ¢k and¢, being the unknowns associated to the voluikies
is used as the control volume. In practice, it is almost andL.
impossible to construct meshes in categtyyor M> in 3D. o

For all variables, piecewise constant functions by control 3-4- The diffusion scheme
volumes are used for approximation. Even when there are
more than one position associated to a control volume
(meshes of categoridds and M,), there is only one degree /V (@V)dQ (13)
of freedom (DOF) or unknown per control volume.

The approximation of the diffusion term

is quite similar to the convective term. We first integrate it
3.3. The convection scheme on a cellK and use the divergence theorem to obtain the
integral of the diffusion flux between voluméds and L.

We start with the approximation of the convective term  Which gives the following expression:

/ aVe(X) -n(xX)dS ~ ok 1Tk, 1.(PL — dk) (14)
K/L

/ V- (¢v)ds2 (11)

Its discrete form is obtained by performing an integration whereag ; is a discrete approximation of the diffusivity
on a cellK and applying the divergence theorem. When the «(x) at the interfacerx 1, Tk 1 is the transmittivity of the
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interfaceok 1 (see Eq. (10)). In this paper, for sake of for diffusion problems, the observed rate of convergence of
simplicity, the diffusivity «(x) will be considered constant the diffusion operator is second order for regular functions
(¢(xX) = ). For problems where diffusivity is variable, see and of order one when Dirac functions are considered.

[15,16]. Nevertheless, when negative transmittivities were located on
boundaries where Dirichlet bournryaconditions are applied,
3.5. Correction of the diffusion coefficient we found that for convection—diffusion problems the scheme

showed poor convergence behavior. In order to enhance the
It is well known that the upwind scheme implicitly intro-  convergence behavior, we propose a simple treatment that
duces too much diffusion. In order to gain more precision, can be easily implemented.
we propose a correction on the diffusion coefficient. This  Let ¢ be a scalar variable such has a concentration or
correction is based upon the power law scheme introduceda velocity vector componengix , an interface of volume
by Patankar [28]. Lettx ; be an approximation of the dif- K for which g, < 0 and the Dirichlet boundary condition

fusion coefficient at the interfaee; 1, itis corrected as fol- ¢ (x) = g(x) is provided. The cell valugk is imposed equal
lows: to the boundary valuepx = g(Xk ), Xk.» being the posi-
k.. =k, -max0, (1— 0.1Pe)5) (15) tion fassqciated to the interfaoegb. Even though this ap-

’ ’ ’ proximation has shown to be satisfactory for practical cases,
wherePg = WLIL\J[XM is called the “local Peclet num- we must say that locally the order of the approximation for
ber”. As the meSKﬁL size tends to zero, there is no more the scalar variablg could be insufficient to ensure global
“correction” of the diffusion coefficient (lim,oPe = 0) convergence of the scheme toward the true solution.

and the approximation of the diffusion flux stays consistent. _

Furthermore, the stability of the convection scheme is pre- 3-7- Theoretical results

served. Here, it is important to understand that this correc- _ ) )

tion does not improve the order of the approximation of the N this section we present a very brief summary of the
convection—diffusion scheme. But, as it will be shown later theoretical results that were proven in [1].

with the numerical results, it does improve the accuracy of

the scheme. 3.7.1. Steady problems
For now on, to simplify the notation, we will drop the hat ~ €onsider the steady problem:
and only keeprg .. V.Vgp)—V(@aVe)=s (18)
Boundary conditions

3.6. Boundary conditions
whereV -v =0 ands € L2(£2).

Let ok, be a boundary interface which is a face of  1he properties shown in [1] depend on the quality of
volume K and Xk the intersection of the orthogonal the triangulation. Meshes of the categorlés, M2 and M
bisectors of this intdace. When a Neumann boundary (with macro-elements) are called “admissible meshes”. For
condition applies, the numerical diffusion flux is equal to these meshes, the following properties were proven:

the exact flux. o
When a Dirichlet boundary condition applies, the value (1) Convergence.et7 be anadmissible mesh apgr(x) =

dx.» = ¢(Xk.p) isimposed at the interface. In this case, the ¢k forany K € 7. ¢7 converges to the unique varia-
numerical diffusion flux is given by the following expression tional solutiong of problem (18) a% — 0, / being the
diameter of the largest volume.
/ aVe(x) - n(x)dS ~ ag ptx 5 (Pk.b — PK) (16) (2) Error estimate Let 7 be an admissible mesh awgde
ot H?($2) the unique variational solution of (18). The
' following error estimate holds:
As for the convective flux, the value of the variabig ;
at the interface is only needeghen the fluid is incoming lexllr2(e) < Ch
(vk.» < 0). The convective flux is then given by: whereex = ¢x —¢(Xk), isthe errorand’ is a positive
constant which is independent of the mesh &ize
/ (Vo (X)) - n() dS ~ m(ok b)vK bk b (17) (38) Maximum principleLet 7 be an admissible mesh and
Kb 1
For meshes of categoryfs, it is possible that for at K= nK) /S(X) diz.
least on boundary interfacex », tx.» < 0. Then, there K
exist Xk ¢ £2, 2 being the computational domain. For this If sk >0 forall K €7 and positive Dirichlet boundary

configuration, there exist at least on position associated to  condition apply for allo € 952, then the solutionpg
a control volume that is outside the computational domain satisfiespg >0 forall K € 7.

and the function being approximated can be undefined at

such location. In the report [17], numerical results show that In theory, those properties insure that:
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e Systematic grid refinement enables the computation of
a solution that is globally more accurate.

e A converged solution does not violate the discrete
maximum when it applies. Hence, this solution should
not exhibit any non-physical behavior.

3.7.2. Transient problems
Consider the transient problem,

¥ 4V (vp) — V(@Vp) =s
Boundary conditions- Initial condition
whereV - v =0 ands € L2(£2). For a first order Euler time
discretization, the following error estimate was also proven
in [1]:

(19)

> (9 (Xk) — dx) m(K) < Clh +81)

KeT

XL

XK.I_ XK
h being the diameter of the largest volunde the time step Fig. 3. Interpolation at an interface.
andC > 0 a constantindependent from the time step and the

mesh sizéh. ok.L, the value for at this interface could be approximated

with the linear interpolation
3.7.3. Remarks

For meshes of categoiys, the approximation of the flux
between two control volumes is consistent. However, it is
assumed that takes the same value for at least two different
positions associated to a control volume. In this case, locally

ok, L= 1 -tk )oKk +tkPL
Xk —Xk,L)- (X1 — Xk)
gL =
(XL —Xk)- (XL —Xk)

for some atypical edges, the order of the local approximation With this linear interpolation, the minimum or the maximum
at the positions associated to a control volume could not of the approximative SO|l:ItI0n. is preserved at the interfaces
be enough to ensure that the latter properties are fulfilled. when 0< kL < 1. .Wh'Ch is only t.he case when the
Nevertheless, in [1], it is shown that even for meshes reference positions lie in their associated control volumes

where atypical edges are found, such as meshes of categorymeshes of categord/s). Unfortunately, the most common
M3 with macro-elements, the numerical solution can still Meshes are those for which there exist reference positions

converge to the true solution if the number of atypical edges that do not lie in their associated control volume. This is
is not too large. the case for meshes of catega¥fy (Fig. 3). Preliminary
Here it is important to bring forward the main weakness numerical results showed that the linear interpolation could
of this finite volume scheme. For highly anisotropic meshes Make the scheme unstable whenzpg did not satisfied the
were the elements have very high aspect ratios (such adnequality O< k.. <1, which is rather frequentin 3D.
most adapted meshes on ShOCkS), the number of atypica| In order to preserve the maxima and the minima of the
meshes can be too high to ensure global convergence to théolution when interpolating a scalar quantity other that the
true solution. This suggests using mesh adaptation with adiffusivity at an interface, we use the geometrical average
;trict cgnst(aint on the aspect ratio of the elemgnts or usi_ng m(K)px +m(L)or
isotropic grid refinement. We also want to mention that this ¢k.L = m(K) +m(L)

constraint does not apply to computations of Euler flows: for ]
such flows there is no diffusive flux. where m(K) is the measure of the hyperplaré (the

In the report [17], the numerical rate of convergence of volume of the cellK in 3D). Unfortunately, in theory, this
the diffusion scheme was studied with extensive numerical @PProximation does not give as much precision than the
experiments. These numerical results show that the observedinear interpolation.
rate of convergence of the diffusion scheme is of order
2 at the circumcenters. It is not a contradiction with the 3.9. Discrete approximation of the gradient
theoretical results: it shows that the theoretical rate of
convergence is not optimal.

(20)

Since our approximation functions are constant by con-
trol volume, the gradient of a function cannot be directly
computed, but only approximated. We first assume that the
gradient(V¢) g of a scalargp over the volumeX is a con-

We first consider meshes where all reference positions stant vector. Le{V¢ - n)kx ;. be the normal gradient to the
lie in their associated control volume. Consider an interface interfaceok ;. (it being a known quantity), we suppose that

3.8. Discrete approximation at an interface
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the projection of(V¢)gx over ok ; should be closed to
(Vo -n)k L:

(Vo) -ng, .~ (Vo -N)k L

(Vo kL =—2L (¢ —¢x)
m(ok,L)

(21)

839

¢

n+l_ n
) _o"tign.
o lt=t,1 5t !

e s" is asource term;

o V(tyr1) = 3v" — Jvi1
is an approximation o¥ at timet =1,1, it is such that
V - V(ty41) = 0.

To obtain a closed system of linear equations, (21) is applied The discrete equations are obtained by integrating (23) over

to all interfaces which belong the cel:
Nk,1 (Vo -nk1
(Vo) = :
Nk .n (Vo -NMk .
or, in a more compact way:

N(VP)k = (Vé - N)o (22)

each control volum& and applying the Gauss theorem:

e

dV+/(V(tn+1)®¢*)~ndS

t=tp41
—/V(quS*) . ndS:/s” dv (24)
0K K

The solution to this system of equations is the approximated ~ The quantitiesp*, ¢" ands" are assumed constant over

gradient.

any given volumeK. When both the convective and the

In general, the over-constraint system of Eq. (22) is not diffusive schemes presented in the previous section are

compatible. The “best” solution is approximated with a least
square method, the linear system

N'N(Vé)x =N (Vo -n),
being solved. It is worth to mention that this approximation

is used to calculate the pressure gradient in the momentum

equations.

There is also a particular case when the control volume

applied to the surface integrals, the discrete equatiokfor
is given by this expression:

3
(k)22 + Y mo)ved
at I=tn41 oelg
— Y (] — dk) =m(K)sk (25)
GESK

K is a tetrahedron and the gradient of a scalar variable iswhere £k is the set of interfaces which belong to the

divergence free:

> (Vo-n), =0

UEEK

Ek being the set of interfacesurrounding the control vol-

boundary of volumeK. The system (25) is linear but not
symmetric and the associated matrix is a diagonal dominant
M-matrix. This imply thatA ~1 has all its coefficients greater
or equal to zero and as a consequence, for suitable source
terms sx (sx = 0, for example), the discrete maximum

ume K. Based upon a geometrical property of tetrahedras, principle will hold for ¢ .

we have the following linear combination:

0=V - ) m@Ne= ) m©)V¢x No
oe£K

> m©)(Ve N,

oe£K

In this case, given this linear combination, there is a
unigue solution to (22).

UEEK

3.10. Discrete equations, convection—diffusion operator
CD

In this section, to discretize the convections—diffusion

The system (25) is used to solve all scalar variables.
The solution of this system will be denoted & =
CD(¢%). Thanks to the time discretization, the components
of the velocity vector are solved in a decouple manner.
Therefore, the convection and diffusion of the velocity field
V"' can be considered as the convection and diffusion of its
three componentsiy = CD(VY). It is worth mentioning
that for the momentum equations, the source term for the
components of the velocity vector takes into account the
pressure gradient:

sy =% — (VP)%

f%. being the discrete approximation of a force on the control

equations, we put together the operators that were defined involume K and(V P) the pressure gradient ov&r. When
the previous sections. Let us consider the following equation convecting and diffusing the velocity field, the solutionis

on the domain2:

d¢

E + V. (V(tn—i-l) ® ¢*) - V((XV(P*) =s"

1=Ilp41

where

(23)

not divergence free and a projection has to be made.
3.11. Projection

In order to compute a velocity field that fulfills the
incompressibility constraint, a projection has to be made. It

e ¢ can be any scalar variable or the components of the is a combination of two operators: the extension operétor

velocity vector;

and the projection operat@t. The goal of the first operator
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is to compute an intermediate normal component of the The solution to Eq. (31) gives the correction to the pressure
cell velocity on the cell interfaces. The projection operator field. As for the correction of the velocity field on the cell
computes both an update of the pressure and the normainterfaces, it is given by Eq. (30). Which is discretized as
component of the cell velocity field at the cell interfaces. The
update of the normal velocity field is latter used to correct the
velocity field within the cells.

Wl = 51— (5P, — 8 P) + T2 (32)
m(o)

on the cell interfaces.

Before solving (31), appropriate boundary conditions
have to be given. When the normal veloaity , is imposed
(at an inlet, a wall or on a symmetry plane), the following

3.11.1. Extension operat@r
This operator is applied on each interface of the control
volumes to compute an intermediate normal velogity

n)”*l/z' Neumann boundary condition holds:
o

$tpV (8P n=o" T2 - 33
E: (V',’<+l/2 v'}() s ((v- n):zr+1/2) B ( ) Vk.b VK.b (33)

The only other case considered is an imposed pressure (such
as at an outlet). In this case, the boundary condition for the
pressure correction is a fithlet boundary condition:

To define this operator, we make the assumption that the
variation of the normal velocity component must agree with
the variation of the cell velocity computed in the predictor
step. To interpolate the variation of the normal velocity, we 8P 5 = g(Xk.p. "*) — ¢(Xk 5. 1") (34)

use the geometrical average: whereg(Xk », 1"1) is the given pressure at time= " +1

(V- n)n+1/2 V-, at the positionX ¢ ;, associated to celtx ;, of volumek.
i After updating the velocity at all interfaces, a velocity
[m(K)dvi +m(L)éVL]-NK.L (26) correction is also made on the cells. bgt ; be an interface
m(K) +m(L) between the cellk and L, this last correction has to be
sv=vtlZ compatible with the velocity update that has been made on

Whenog  lies on the domain boundary, the intermediate this interface:

normal velocity is computed with this expression: (Vn+l _ Vn+l/2) Nk.L
1/2
g2 =V 4 vk Nk (27) = Wi [(v- gt — v (35)
It is worth to mention that the boundary condition for whereWy ; is a parameter such that
the normal velocity must not be considered at this stage.
If it were so, it would be possible to construct a non- Wy {b|g number(i.e., 10°) U{:HL € wall
otherwise

constant velocity field for which the discrete divergence
approximation would be zero. In this case, the solution For each control volume, a linear system of equations
would exhibit spurious pressure oscillations that have no is built by applying (35) to all interfaces which belong to

physical meaning (false pressure modes). K. This linear system can be inconsistent, its solution is
Later on, the computation of the velocity field+1/2 always approximated with a least square method. In order
with the extension operator will be denoted as: to make sure that the cell velocity always agrees with an

adjacent wall boundary condition, the paramétérad to
be introduced.

Both the velocity-pressure formulation and the projection
operator fall into the same class than the operators presented
in [18]. Hence, the proof of the unicity of the solution for the
pressure given in [18] also applies to this scheme.

(v-n)Et2 = E(vtl2 v (28)

3.11.2. Projection operatoP
The projection operator actually computes a velocity field
that is divergence free, it is applied to both the pressure and

the velocity Finally, the application of the projection operator on the
Pi(PE, (v-nE2) s (P Vi) (29) intermediate velocity fieldv - n)2 "/ and the pressurgy.
and itis carried out in two steps. Eq. (7) is first written under Will be denoted as:

this form: (PEFL VY = P(PE, (v- n)itY/?2) (36)
Vi = 518V (8 PTL) v tL/2 (30) We end this section by making a short remark for the

special case where there are no macro-elements. For this
type of mesh, all control volumes are tetrahedras and it
is possible to use the zero degree Raviart—-Thomas finite

This expression is then substituted into the continuity equa-
tion, which is then discretized:

Bdt Z m(cr)(V(SP”Jrl . n)a element which contains the following polynomials [19,20]:
€&k a+dx
=Y m(o)(v- it (31) b+dy ., V(a,b,c)enR®

oekk c+dz
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With this family of elements, it is possible to compute a tions were carried out in three dimensional domains, even
velocity fieldvg which satisfies the following equations: for the 2D flows.

Before showing our results, we must say a few words
about the resolution of the systems of discrete of equations.
Z Vg -ny, =0 (37) First, we recall that these systems of equations are linear
oex and the scheme does not require any non-linear solver. To

Then, it is possible to use an extension and a projection SPE€d-UP the computations, we always store the matrix of
operators for which the normal components of the cell coefficients associated to the discrete systems of equations.

velocity field on each interface is continuous and satisfies In th|§ paper, all resglts were obtain using the Orthpmmz
the divergence free constraint [9,10,21]. For our scheme,algor.'thm' This al_gonthm Is not as.known as the c_onjugate
where macro-elements are frequent, it is not the case: thegradlent. It requires more operations (one matrix vector

normal components of the cell velocity field cannot directly multiplicatiobn by iteratign), but does noé nheed thfe linear
be computed from the cell velocity and we do not make use SYStém to be symmetric. We compared the performance
of the Raviart—Thomas finite elements. of this algorithm to GMRES and the conjugate gradient.

For the problems we considered, Orthomin2 was a better
3.12. The complete algorithm choice than the others or the combination GMRES-CG
(conjugate gradient for the symmetric systems associated

We end this first part of the article by giving the whole € projection operator and GMRES for the other linear
algorithm for solving the Navier—Stokes equations coupled SyStéms). As for the preconditioner, we only used a simple
with other scalar transport equations such as the energyJaCOb' diagonal preconditioner. For more information on
equation. We always use a start-up step and care must bdnese solvers, see [22].
given to the notation for the initial step: For all problems, we give plots of the convergence

history for the computations made on the finest grids. The
o vt stands for an initial velocity field which is always 90l is to verify the consistency of the extension-projection
null: operator. A contradiction between convergence histories for
o v}l/z is the initial condition ér the velocity field: the varlatlons_of variables and the re&dgalsl would show
that the solution computed after the projection does not
satisfy the Navier—Stokes equations. Thus showing that the
projection operator is not appropriate.

Vk -Ng,L =—VL-NL K

e P.lis the initial condition for the pressure;
. ¢?< is the initial condition foithe scalar variables.

The algorithm is as follows: L .
9 4.1. Natural Convection in a square cavity
o Given the initial conditionvg® = 0, vi.”2, Pt andg?

. P K f This problem deals with a confined Boussinesq 2D fluid
apply the extension and the projection operators:

flow in a square cavity. The free convection originates from
(V- n);l/Z - E(v;l, Vgl/z) buoyancy forces due to a fluid density gradient. We consider
0.0\ _ 1 _172 the body forceg(pc — p) Whereg is the local acceleration
(PK’ VK) - P(PK (Vem), ) and p. is the density for a reference state. For an incom-
e Given a solution/”, P" and¢”, pressible flow with small temperature gradients, this force
(1) apply the convection—diffusion operator to all com- can be approximated with tH@oussines@pproximation

onents of the velocity vector:
P Y 3(Poo — P) = GpocB(T — Too)

Vn+l/2 _ CD(V” )
K K whereg is the volumetric thermal expansion coefficient and
(2) apply the extension and the projection operators: T, the temperature for the reference state. This source term

_ +1/2 is added to the momentum equations to model the body
(v 2= BV vg) force.
(PEL VY = P (PR, (v-n)it?) We carried out computations for a fluid of Prandt number

0.71 and Rayleigh number of 40The details for the set up

3) apply the convection—diffusion operator to all scalar
(3) apply P for this problem are presented thereafter.

guantities:
?1 =CD(%) Domain:
[0.0,0.1] x [0.0,1.0] x [0.0, 1.0]
4. Numerical results Boundary conditions:

In this section, we present some numerical tests that were? " Nlag =0, V-tlpe =0

conducted to validate this numerical scheme. All computa- T(y =0, z) =0, T(y=L,z)=1
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oT -0 compared to those obtain by others with a second order

On |,—0,.=L discretization scheme. We solved this problem on three

Initial condition:v(x) =0, P(X) =0, T(x) =0 different unstructured meshes made of 902, 3656 and 8254

Physical properties and dimensions: control volumes (a plane cut of the coarsest mesh is shown
3 in Fig. 4). Two simulations were carried out for each

Ra— PIGIATL" _ 108 pr=® _o71 meshes: one with the power-law scheme, the other without a

ku ' cpk correction of the diffusion coefficient.
p =10, =1, L=10, w=0.71 In Table 1, we compare the maximum value of the

velocity components on the mid-plane sections and their
locations to the benchmark values published by Vahl Davis
et al. Our functions of approximation being constant by
control volume, we do not give an exact location. Instead,
8t=0.1 we give the interval in which they are located.

In Table 2, we present the maximum value of the Nusselt
number and its average on the hot wall. For each control
|Un+1 " |oo <1%x102 and volume K adjacent to the hot wall, the approximation of the

ntl o 5 Nusselt number was computed as follows:
|w —w |Oo <1x10

Lretk ToK - Tk
K = :
kreiATret || Xo — Xk ||

We recall thatk is the thermal conductivity and, the
specific heat at constant pressure.
Time step:

Convergence criteria:

Nu

This problem has been studied in details by Vahl Davis et

al. ([23,24] for different Rayleigh numbers). These authors Where, in this caseLret = 1, kref = 1, ATret = 1. For the
solved this problem on several meshes with a second ordeMNUsselt number, we give the exact location where the flux
difference method and extrapolated reference quantitiesWas computed.

with Richardson’s extrapolation. Hence, our results are  For all benchmark quantities, systematic grid refinement
lead to more accurate results. Moreover, the power law

scheme gave more accurate results than the upwind scheme.
For all further computations presented in this paper, the
power-law scheme is preferred to the simple upwind scheme.

In Figs. 5 and 6, we show plane cuts of the velocity com-
ponents and the temperature for the solution obtained with
the finest grid and the power-law scheme. The convergence
history for this solution is shown on Fig. 7.

4.2. 2D flow around a cylinder

This problem deals with an internal flow between two
parallel planes. A cylinder is present near the inlet and its
center is slightly above the mid-section. Hence, the flow is
not symmetric and lift is produced. The computations were
carried out for the Reynolds numhbee= 20. For such a low
Reynolds number, there is no vortex shedding and the flow is
permanent. Itis not a thermal flow. Nevertheless, it evaluates

Fig. 4. 2D Boussinesq flow: coarsest mesh (902 cells). the capacity of the scheme for computing, on unstructured
Table 1
2D Boussinesq flow: maximum velocigpmponents at mid-plane sections
Our results Power-law Wmax Umax
scheme z=1/2 y=1/2
902 cells no 215.12 €[0.0002 0.0433 72.46,7 € [0.827,0.870]
902 cells yes 217.58 € [0.0002 0.0433 66.89,z € [0.827,0.870]
3656 cells no 217.11; € [0.0431 0.0433 69.99,z € [0.870,0.87Q]
3656 cells yes 218.83,€[0.0416 0.0433 65.89,z € [0.848 0.868]
8254 cells no 217.82; € [0.029 0.433| 68.095,z € [0.855 0.856)]
8254 cells yes 219.34,€[0.029 0.433 65.74,z € [0.855,0.856]

Reference solution 219.36,=0.0379 64.63z = 0.850
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Fig. 5. 2D Boussinesq flow: Comparative ukts, velocity components on the mid-planes- 1/2 andz = 1/2.
Table 2 ‘rrrror oo
2D Boussinesq flow: maximum and average Nusselt number at the hot wall 0.9 froeieridod b
Our results Power-law Numax Nu 0.8
scheme
Q07
902 cells no 22.41% = 0.0750 11152 i
902 cells yes 20.785,= 0.0750 10632 > 0.6
3656 cells no 20.07% =0.0375 9883 E 0.5
3656 cells yes 19.086,= 0.0375 9374 g
8254 cells no 18.713; = 0.0417 9521 é 0.4
8254 cells yes 18.443,=0.0417 9105 S 03
Reference solution 17.925,=0.0378 8800 02
0.1
non-orthogonal meshes, quantities related to the diffusion 0 I
flux. The set-up for this problem is as follows: 0 0.10203040506070809 1
Domain: Position x
[0.0,0.1] x [0.0, 2.2] x [0.0, 0.41], Fig. 6. 2D Boussinesq flow: Comparative results, temperature on the

. mid-plane section = 1/2.
see Fig. 8. P /

Boundary conditions:
Physical properties:

Inlet: 2uD
4.v,-(H—7) Re= =20, v, =0.2, D=0.1
v(x,y:O,z):T | v
w(x,y=0,2)=0 Time step:
Outlet: 8t =0.05
@ =0 Convergence criteria:
Zr(lxxyy: 222 2)=0 vt —w"|  <1x107° and
P(x,y=22,2)=0 |v"+1—w"|00<1x10_5
Walls:
v-n=0, v-t=0

For this problem, we compare our results to benchmark
guantities published by Turek et al. [25]. In this report, the
drag, lift and difference of pressure between two positions
Vv(X) =0, Px)=0 on the disc are given. The following quantities are provided:

Initial condition:
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Fig. 7. 2D Boussinesq flow:
are shown on the right.
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Fig. 8. 2D flow around a cylinder: Geometry.

(1) drag coefficient:

2-Fp
Cp=—5——
pvsDHL
d
Fsz(o,ui,P) 7dA
on
s
(2) lift coefficient:
2. F
C, = ZiL
pveDHL
ad
FL =—/<o,vﬁ,P> ‘ndA
an
s

(3) pressure difference:
AP = P(0,0.150.2) — P(0,0.25,0.2)

where:

e L =0.10 is the depth in the 3rd dimension (the flow
being solved in a 3D domain);

7 is a tangent vector to the cylinder surface;

vr = V- 7 is the tangential speed at the cylinder surface;
n is the unit normal vector to the surface cylinder;

aS is the area of the cylinder.
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Table 3
2D flow around a cylinder: Maximumrédg, lift and other comparative
results

Cells Cp Cr AP

16933 5.58 0.0073 0.119
36724 5.58 0.0124 0.117
49231 5.58 0.0118 0.116

Benchmark quantities 5.57-5.59  0.0104-0.0110 0.1172-0.1176

In order to show that we are able to obtain a solution which
is independent from the grid size, computations were carried
out on three different meshes. The benchmark quantities
provided by Turek et al. [25] and our results are presented
in Table 3.

We were able to predict thealy coefficient accurately for
all three meshes. As for the lift, the difference between our
results and the reference quantities diminish as we refine our
grid. Finally, for the pressure difference, the value given by
our scheme is slightly below the benchmark result. We give
the convergence history for the finest mesh in Fig. 9.

4.3. 3D thermal flow in a cylinder

This problem deals with a forced thermal flow in a
cylinder. The temperature is imposed both at the inlet and
on the cylinder’s surface. The flow is not developed at the
inlet, a constant velocity being imposed at this location. All
the data needed to solve this problem are presented below.

Domain:
x(0) 0.05- cog90)
02=1] y@®) | =1 0.05-sin(9)
Z Z

0<0<n/2 0<z<12

Boundary conditions:
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Fig. 9. 2D flow around a cylinder: Convergence, thagh on the left shows the norms of the variatiqma%+1 — ¢" |0, the norms||¢”+l — " |2 of the
residuals are shown on the right.

Inlet: laminar flow, Rep < 2300, the location at which the flow

starts to be fully developed is approximated as follows:
u(x,y,z=0)=0, v(x,y,z=0)=0

L
wix,y,z=0=1  T(x,y,z=0=1 (_) ~ 0.05Re)
[
Outlet: ) am ) )
In this region, the velocity component and the pressure
u(x,y,z=12)=v(x,y,z=12)=0 gradient can be computed with these equations:
ow 0 P( 12=0, XL 0
- = X,y,z=1. =V, —_— =
nf—12 on {12 w(r =/x2+?)
Walls: 1 9P /D 2 2
4 (2) (- (52) ) &
v-n=0, v-7=0, T=0 4p 9z \ 2 D/2
oP 8- - wy
Initial condition: e (D/2)2 (39)
V=0,  PX¥)=0, T(X)=0 As for the temperature, the length at which the flow is
D L
Rep= "2 120 w, =10 (—) ~ 0.05Rep - Pr
v D lam, T
Ve
Pr= 7” =1.0, D=0.1, cp,=10 In this region, we do not have an exact solution for the
Ti ten: temperature. Nevertheless, in this part of the domain, there
Ime step: is no variation along the cylinder of the dimensionless
st =0.1 temperature:
iteria: o ( Ty — T(X
Convergence criteria _( 5 (X) > —0. (40)
|wn+l _ wn| <1x10°° 0z \Ts — T (2)
(e.¢]

T, (z) being the mean axial temperature in a given section.
w, is the average of the speed for a section of the ductand  For each cross section areaistmean axial temperature is
the diameter. This flow being symmetric, the computations often called mixed mean fluigmperature and is defined as
were carried out only on one quarter of the domain. The (see Kays [27]):
3D meshes were built using the extrusion of 2D meshes
composed of triangles. The grids were made of 40, 60 and T =
80 sections, respectively. cWq

For this flow, there is an analytical solution in the region

of the domain where the flow is fully developed. For a A, being the area of a cross section.

/ wX)T (x)dS

c
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There is another important result for thermally developed was computed. Those norms are given in Table 4. We also
flow in a circular tube, it can be shown that the Nusselt provide the following ratios:
number at the surface is constant [27]:
(1) h™/h™=1 the ratio between the diameters of the largest
Nup = 3.657 cell of meshn and meshn — 1;
For the computation oNup, the length of reference is  (2) lle”llL,/le” L, the ratio between the norms of the
Lref = D = 0.1 and the reference temperature is the mean  error for meshn and meshn — 1.
axial temperature.

In order to verify the convergence behavior of our scheme In Section 3.7.1 we gave an error estimate for the convection—
toward the exact solution, we computed some estimates ofdiffusion operator. We also recall that tiie norm of this
the error for the velocity, pressure gradient and Nusselt €rror estimate depends on the diameter of the largest cell. In

number in the last section of the duct. this case, the results given in Table 4 show that the observed
For all these variables, the, norm rate of convergence agrees with the theoretical results. More-
over, for the problem we considered, the rate of convergence
lellr, = Zm(K)(¢K _ ¢(XK))2 of the approximative flux is also of the same order.
K
2
Table 4 1.8
Thermal flow in a cylinder, normi¢g — ¢ (Xk)ll ., of the error
Variable  n™/pm—1 w g—’; Nu 16
(=)
cells S 14
29080 77576 47275 28974 4
67500 0.667 306 3767 19574 12
lle™ L, g
— 2 0.452 Q796 Q675 g
lem=2il., g 1
133200 0.750 276 2917 13774 g ; :
lle™ Il S 08 | "Our Solution ———— «+eerebesesee S
m 0.791 ar74 Q703 ‘? Exact Solution ------
% H H
>
Table 5
Thermal flow in a cylinder, statistes ] o E
Statistics  Iterations Time Time per Memory usage : : : :
unknowns (seconds) iteration (megabytes) 0 i i ! !
145400 84 1612 19.2 67 0.01 0.02 _ 0.03 0.04
337500 95 4688 49.3 150 Radius r
666000 134 12526 93.5 294 Fig. 10. Thermal flow in a cylinder: Velocity profile near the outlet.
10°F T T T T T 7 10
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> 0.001 & 0.001
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Fig. 11. Thermal flow in a cylinder: Convergencee tiraph on the left shows the norms of the variatightst™ — ¢ |, the norms|¢”+1 — ¢ ;2 of the
residuals are shown on the right.
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In Fig. 10, we show that there is no significant difference  Numerical solutions for laminar steady flows were pre-
between the computed velocity componeantand the ana-  sented. For all cases, the solutions computed with this
lytical solution given by Eq. (38). As for the other problems, scheme were in good agreement with those presented by
we show the convergence curves for the simulation on the other researchers or exact solutions. For all problems, refer-
finest grid in Fig. 11. ence quantities associated with the diffusion flux were com-

In Table 5, we provide some statistics relative to the puted on non-orthogonal grids. To show that the solution
performance of the computer code. We believe that thosecomputed after the projection satisfies the Navier—Stokes
statistics are relevant to those who want to compare their €quations, we gave the convergence curves for both the vari-
code with others. This computer code was written in C++ ations of the variables and the residuals. This scheme is
and all the real numbers were stored in double precision under active development, numerical results for a turbulent
format. All the problems considered in this paper were flow using thek— model have already been presented in [14,
ran on a single processor PC equipped with AMD1000 26]. Current developments of the scheme include: a second
thunderbird. We must say that those statistics show one oddorder approximation of the convection flux, more exhaustive
behavior of the computer code: the number of time steps computations of turbulent flows with heat transfer and an ex-
needed to reach convergence grows with the number oftension to compressible flows.
unknowns. Hence, the time taken to solve a problem does
grow linearly with the number of unknowns. This behavior
is mainly caused by the deterioration of the conditioning of References
the matrix a;soqated o the mouqn opera.tor (we reca”. [1] R. Eymard, T. Gallouet, R. Herbin, Finite volume methods, in:
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