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Abstract

We present a new method to solve incompressible thermal flows and the transport of scalar quantities. It is a finite volume s
unstructured meshes whose time discretization is based upon the fractional time step method. The governing equations are discr
a collocated, cell-centered arrangement of velocity and pressure. The solution variables are stored at the cell-circumcenters. T
is convergent, stable and allows computing solutions that does not violate the maximum principle when it applies. Theoretical re
numerical properties of the scheme are provided. Predictions of Boussinesq fluid flow, flow past a cylinder and heat transport in
are performed to validate the method.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction, mathematical model

In this paper we consider the following mathemati
model. When the density of the fluid is constant, the fl
in a domainΩ is governed by the Navier–Stokes equatio

∇ · v = 0 (1)

∂v
∂t

+ ∇ · (v ⊗ v) + ∇P − ∇(ν∇v) = f (2)

where

• P = p/ρ, P being the kinematic pressure,ρ the density
andp the pressure;

• ν = µ/ρ, ν being the kinematic viscosity andµ the
dynamic viscosity;

• f is a source term such as buoyancy force.

* Correponding author
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When the specific heatcp of the fluid is considered con
stant,2 a model for the transport of heat by the fluid is:

∂T

∂t
+ ∇ · (vT ) − ∇(α∇T ) = s (3)

where α = k
cpρ

is the thermal diffusivity,k the thermal
conductivity ands a source term.

In order to solve these equations, they must come w
appropriate boundary conditions and, for a non-perma
flow, a suitable initial condition. By adjusting the sourc
terms to the problem being considered, this model
be applied to many industrial problems that deal with
transport of a scalar quantity by an incompressible fl
Even though many stable and globally convergent sche
are already available for specific cases such as Euler fl
or Stokes flows, only a few fulfill the following physica
principles for more general problems:

• local conservation of mass and scalar quantities;
• numerical preservation of the maximum principle

the scalar quantities.

2 In general, the specific heat can be variable. We make this hypot
to ease the presentation of the scheme.
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Nomenclature

cp specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

EK set of interfaces surrounding volumeK

Eext set of interfaces surrounding the domain
Eint set of interfaces inside the domain
m(σ) measure of a general hyperplaneσ

n unit normal vector
p pressure . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−2

P kinematic pressure . . . . . . . . . . . . . . . . . . . . m2·s2

s general source term
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
v speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

v velocity vector . . . . . . . . . . . . . . . . . . . . . . . m·s−1

vK,L speed normal to the interface of volumesK

andL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

x coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
XK position associated to an elementK . . . . . . . . m

Greek symbols

α diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . m2·s−1

µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

Ω computational domain
φ general scalar variable
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σK,L interface between elements (or volumes)
K andL

τK,L transmittivity of interfaceσK,L . . . . . . . . . . . . m
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Some numerical schemes using the cell centered finite
ume method on structured meshes satisfy these req
ments. However, only a few theoretical results are availa
for unstructured triangular or tetrahedral meshes (see
louët et al. [1]). The scheme presented hereafter fulfills
previous requirements.

There are few cell centered finite volume methods
enable the use of unstructured meshes and accurate co
tations of the diffusion flux on non-orthogonal grids. Ma
cell centered finite volume methods whose interpola
functions are constant by control volume use the cente
the cells as a reference position to compute the diffus
flux. Let φ be a scalar variable,3 K andL be adjacent con
trol volumes whose centers areXK andXL, many computer
codes use the following approximation of the normal gra
ent to the cells interface:

∇φ · nK = φL − φK

dK\L
wheredK\L is the distance between the centers of cellsK

and L. For non-orthogonal meshes, this approximation
the flux is not consistent, which can lead to important err
Even the approximation

∇φ · nK = φL − φK

(XK − XL) · nK

does not lead to a consistent approximation of the flux. F
thermore, there here is also a singularity when(XcK −
XcL) · nK tends to zero. For those discretization schem
accurate computations of reference quantities related to
diffusion flux (Nusselt number, drag coefficient, lift coef
cient, friction coefficient,. . .) can be tedious. Moreover,
is important to point out that when the approximation of

3 In this paper, when an equation or relation applies to any scalar var
(the temperature, a concentration,a component of the velocity vector), w
use the variableφ.
-

-

diffusion flux is not consistent, the error does not vanish w
grid refinement (see [2] for more details).

With a cell based gradient reconstruction using a le
square method or the Green-Gauss theorem, it is
possible to approximate the gradient at an interface [3
However, it can lead to a wider stencil with a less favora
weight distribution of the coefficients [5,6]. In this latt
case, the discretization of the Laplacian can be nonpos
Moreover, since the approximation of∇φ · nK on K|L is
not necessarily equal to the approximation−∇φ · nL in
the cellL, this approach raises another difficulty about
conservativity of the diffusion flux.

In this paper, we propose a novel approach where the
lution variables are located atthe cell-circumcenters. Thi
allows computing a consistent approximation of the visc
fluxes on non-orthogonal meshes without gradient rec
struction. Which leads to discretization of the Laplacian t
is always positive. With an appropriate discretization of
convective fluxes, this scheme is convergent, stable an
lows computing solutions that does violate the maxim
principle when it applies.

First of all, the time discretization of the Navier–Stok
equations. will be presented. This time discretization
based upon the fractional time step method (or projec
method) constructed in the late 60s by Chorin [7] a
Teman [8].

Second of all, the spatial discretization of the govern
equations will be detailed and some theoretical results
be provided. This spatial discretization is an application
recent theoretical results on finite volume methods publis
by Gallouët et al. [1] and a generalization of the recent w
of Boivin et al. [9,10]. In these papers, Boivin et al. propos
a finite volume scheme for 2D triangular meshes and g
an extension to two phase flows. The scheme presented
after is a generalization of this work to 3D general mes
where a control volume is not always a tetrahedron but
be an assembly of tetrahedras. This section covers:
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• the spatial discretization of the convective and diffus
fluxes,

• the discrete interpolation of scalar variables and
diffusivity coefficients at cell interfaces,

• the approximation of the cell gradient of a scalar,
• application of boundary conditions.

Afterward, we will discuss the projection scheme us
to compute a divergence-free vector field and update
pressure field. Finally, we present the whole algorithm u
to solve the Navier–Stokes equations on unstructured gr

In the second part of the article, we present so
numerical results that were usedto validate the present finit
volume scheme. These results include: Boussinesq flo
cavity, permanent flow past a cylinder and heat trans
in a cylinder. For all test cases, convergence history tow
steady states are shown and computations on several
are performed.

2. Time discretization

The time discretization is semi-implicit and based up
a variation of the projection scheme originally proposed
Chorin [7] and Teman [8] and often called “projection-
scheme. Let,

∂φ

∂t

∣∣∣∣
t=tn+1

= φn+1 − φn

δt
(4)

be the approximation of the temporal derivative for a sc
variableφ and

v(t = tn+1) = 3

2
vn − 1

2
vn−1 (5)

the approximation of the velocity field at timet = tn+1,
the time discretization of the governing equations is
following:

• Prediction:

∂v
∂t

∣∣∣∣
t=tn+1

+ ∇ · [v(t = tn+1) ⊗ vn+1/2 − ν∇vn+1/2]
+ ∇Pn = fn (6)

• Projection:

vn+1 − vn+1/2

δt
= −β∇(

δPn+1)
δPn+1 = Pn+1 − Pn

(7)

∇ · vn+1 = 0 (8)

• Convection and diffusion of other scalar variables s
as the temperature:

∂T

∂t

∣∣∣∣
tn+1

+ ∇ · [v(t = tn+1)T
n+1 − α∇T n+1] = sn (9)
s

The parameterβ ∈]0,2] is used for relaxation and its valu
is not arbitrary. When the flow is steady, the final solut
does not depend on its value. But the rate of converge
does so. We found that a value ofβ = 2

3 often gives the bes
rate of convergence. Hence this value is the one retaine
all computations shown in this article. When transient flo
are considered, a second order time discretization is m
appropriate andβ must be chosen accordingly. Since only
permanent flows are considered in paper, we will not g
more information on this matter. But the reader is invi
to read some papers published by Shen et al. on proje
schemes [11–13] and the references [14,15] where tran
flows are solved with the scheme presented in this pape

3. Space discretization

The convection and diffusion schemes are prese
thereafter. The convection scheme is simple and robust.
diffusion scheme is based upontheoretical results recentl
published by Gallouët et al. [1]. A numerical study of th
diffusion scheme was performed in the report [17] a
some of those results were also published in [9]. Fina
this numerical scheme has given satisfactory results for
resolution of incompressible two-phase flows in a 2D fra
(see [10]).

3.1. Geometrical elements

The initial mesh is built with tetrahedras. For ea
tetrahedronK, let XK be its circumcenter. This point i
allowed to be insideK, outsideK, or on its boundary
Let σK,L be the interface between tetrahedrasK and L,
XK andXL be the circumcenters of tetrahedrasK andL.
The straight line going through these points is alw
perpendicular to the cell interfaceσK,L (Fig. 1). Hence,
by storing the variables at these locations, we can com
a consistent approximation of the diffusive flux with
minimal stencil. For this scheme, the circumcenters will
the reference positions associated to the control volume

3.2. Control volumes and approximation functions

Let σK,L be the interface between tetrahedrasK andL

and nK,L the outward normal unit vector of the interfa
σK,L of K. We then introduce the following quantity calle
“transmittivity” (see [1]):

τK,L = m(σK,L)

(XL − XK) · nK,L

(10)

wherem(σK,L) is the area ofσK,L. All meshes can fall into
one these four categories of meshes:

• CategoryM1: For all interfacesσK,L, τK,L > 0 and for
all tetrahedrasK, XK ∈ K. The control volumes are th
tetrahedras.
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Fig. 1. Circumcenters for tetrahedrasK andL.

• CategoryM2: For all interfacesσK,L, τK,L > 0, but
there exist at least one tetrahedronK for whichXK /∈ K.
The control volumes are the tetrahedras.

• CategoryM3: For at least one interfaceσK,L, τK,L < 0,

the Delaunay condition is not fulfilled. The tetrahed
K andL are combined together to form a new mac
element and the control volume is the macro-elem
At least two positions (XK andXL) are associated t
this control volume.

• CategoryM4: For at least oneσK,L, |τK,L| → ∞, at
least two circumcenters lie at the same location. T
elementsK andL are combined to form a new macr
element and the control volume is the macro-elem
At least two positions (XK andXL) are associated t
this control volume.

These categories are the same in 2D when triangles
the elements, they are shown on Fig. 2. In the 2D c
triangles in categoryM4 are such thatXK = XL. Meshes
of categoriesM1 andM2 fulfill the Delaunay condition.

For categoriesM3 and M4, tetrahedras are combine
together in a large macro-element. This macro-elemen
is used as the control volume. In practice, it is alm
impossible to construct meshes in categoryM1 or M2 in 3D.

For all variables, piecewise constant functions by con
volumes are used for approximation. Even when there
more than one position associated to a control volu
(meshes of categoriesM3 andM4), there is only one degre
of freedom (DOF) or unknown per control volume.

3.3. The convection scheme

We start with the approximation of the convective term∫
∇ · (φv)dΩ (11)

Its discrete form is obtained by performing an integrat
on a cellK and applying the divergence theorem. When
Fig. 2. Mesh categories.

flux is approximated with an upwind scheme, the integra
an interfaceσK/L is given by the following expression:∫
K/L

(
vφ(x)

) · n(x)dS ≈ m(σK,L)vK,LφK,+ (12)

where:

• vK,L is an approximation of the speed normal to
interfaceσK,L, n(x) is the outward normal unit vector

• φK,+ =
{

φK, vK,L � 0
φL, otherwise

φK andφL being the unknowns associated to the volumeK

andL.

3.4. The diffusion scheme

The approximation of the diffusion term∫
∇ · (α∇φ)dΩ (13)

is quite similar to the convective term. We first integrate
on a cellK and use the divergence theorem to obtain
integral of the diffusion flux between volumesK and L.
Which gives the following expression:∫
K/L

α∇φ(x) · n(x)dS ≈ αK,LτK,L(φL − φK) (14)

whereαK,L is a discrete approximation of the diffusivi
α(x) at the interfaceσK,L, τK,L is the transmittivity of the
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interfaceσK,L (see Eq. (10)). In this paper, for sake
simplicity, the diffusivityα(x) will be considered constan
(α(x) = α). For problems where diffusivity is variable, s
[15,16].

3.5. Correction of the diffusion coefficient

It is well known that the upwind scheme implicitly intro
duces too much diffusion. In order to gain more precisi
we propose a correction on the diffusion coefficient. T
correction is based upon the power law scheme introdu
by Patankar [28]. LetαK,L be an approximation of the dif
fusion coefficient at the interfaceσK,L, it is corrected as fol-
lows:

α̂K,L = αK,L · max
(
0, (1− 0.1Pel )

5) (15)

wherePel = |vK,L|‖XK−XL‖
αK,L

is called the “local Peclet num
ber”. As the mesh size tends to zero, there is no m
“correction” of the diffusion coefficient (limh→0 Pel = 0)
and the approximation of the diffusion flux stays consiste
Furthermore, the stability of the convection scheme is p
served. Here, it is important to understand that this cor
tion does not improve the order of the approximation of
convection–diffusion scheme. But, as it will be shown la
with the numerical results, it does improve the accurac
the scheme.

For now on, to simplify the notation, we will drop the h
and only keepαK,L.

3.6. Boundary conditions

Let σK,b be a boundary interface which is a face
volume K and XK,b the intersection of the orthogon
bisectors of this interface. When a Neumann bounda
condition applies, the numerical diffusion flux is equal
the exact flux.

When a Dirichlet boundary condition applies, the va
φK,b = φ(XK,b) is imposed at the interface. In this case,
numerical diffusion flux is given by the following expressi∫
σK,b

α∇φ(x) · n(x)dS ≈ αK,bτK,b(φK,b − φK) (16)

As for the convective flux, the value of the variableσK,b

at the interface is only neededwhen the fluid is incoming
(vK,b < 0). The convective flux is then given by:∫
σK,b

(
vφ(x)

) · n(x)dS ≈ m(σK,b)vK,bφK,b (17)

For meshes of categoryM3, it is possible that for a
least on boundary interfaceσK,b, τK,b < 0. Then, there
existXK /∈ Ω , Ω being the computational domain. For th
configuration, there exist at least on position associate
a control volume that is outside the computational dom
and the function being approximated can be undefine
such location. In the report [17], numerical results show
for diffusion problems, the observed rate of convergenc
the diffusion operator is second order for regular functi
and of order one when Dirac functions are conside
Nevertheless, when negative transmittivities were locate
boundaries where Dirichlet boundary conditions are applied
we found that for convection–diffusionproblems the sche
showed poor convergence behavior. In order to enhanc
convergence behavior, we propose a simple treatment
can be easily implemented.

Let φ be a scalar variable such has a concentratio
a velocity vector component,σK,b an interface of volume
K for which τK,b < 0 and the Dirichlet boundary conditio
φ(x) = g(x) is provided. The cell valueφK is imposed equa
to the boundary value:φK = g(XK,b), XK,b being the posi-
tion associated to the interfaceσK,b. Even though this ap
proximation has shown to be satisfactory for practical ca
we must say that locally the order of the approximation
the scalar variableφ could be insufficient to ensure glob
convergence of the scheme toward the true solution.

3.7. Theoretical results

In this section we present a very brief summary of
theoretical results that were proven in [1].

3.7.1. Steady problems
Consider the steady problem:{∇ · (vφ) − ∇(α∇φ) = s

Boundary conditions
(18)

where∇ · v = 0 ands ∈ L2(Ω).
The properties shown in [1] depend on the quality

the triangulation. Meshes of the categoriesM1, M2 andM4
(with macro-elements) are called “admissible meshes”.
these meshes, the following properties were proven:

(1) Convergence. LetT be an admissible mesh andφT (x) =
φK for any K ∈ T . φT converges to the unique vari
tional solutionφ of problem (18) ash → 0, h being the
diameter of the largest volume.

(2) Error estimate. Let T be an admissible mesh andφ ∈
H 2( 	Ω) the unique variational solution of (18). Th
following error estimate holds:

‖eK‖L2(Ω) � Ch

whereeK = φK −φ(XK), is the error andC is a positive
constant which is independent of the mesh sizeh.

(3) Maximum principle.Let T be an admissible mesh and

sK = 1

m(K)

∫
K

s(x)dΩ.

If sK � 0 for all K ∈ T and positive Dirichlet boundar
condition apply for allσ ∈ ∂Ω , then the solutionφK

satisfiesφK � 0 for all K ∈ T .

In theory, those properties insure that:
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• Systematic grid refinement enables the computatio
a solution that is globally more accurate.

• A converged solution does not violate the discr
maximum when it applies. Hence, this solution sho
not exhibit any non-physical behavior.

3.7.2. Transient problems
Consider the transient problem,{

∂φ
∂t

+ ∇ · (vφ) − ∇(α∇φ) = s

Boundary conditions+ Initial condition
(19)

where∇ · v = 0 ands ∈ L2(Ω). For a first order Euler time
discretization, the following error estimate was also pro
in [1]:√ ∑

K∈T

(
φ(XK) − φK

)2
m(K) � C(h + δt)

h being the diameter of the largest volume,δt the time step
andC > 0 a constant independent from the time step and
mesh sizeh.

3.7.3. Remarks
For meshes of categoryM3, the approximation of the flux

between two control volumes is consistent. However, i
assumed thatφ takes the same value for at least two differ
positions associated to a control volume. In this case, loc
for some atypical edges, the order of the local approxima
at the positions associated to a control volume could
be enough to ensure that the latter properties are fulfi
Nevertheless, in [1], it is shown that even for mes
where atypical edges are found, such as meshes of cat
M3 with macro-elements, the numerical solution can s
converge to the true solution if the number of atypical ed
is not too large.

Here it is important to bring forward the main weakne
of this finite volume scheme. For highly anisotropic mes
were the elements have very high aspect ratios (suc
most adapted meshes on shocks), the number of aty
meshes can be too high to ensure global convergence t
true solution. This suggests using mesh adaptation wi
strict constraint on the aspect ratio of the elements or u
isotropic grid refinement. We also want to mention that t
constraint does not apply to computations of Euler flows:
such flows there is no diffusive flux.

In the report [17], the numerical rate of convergence
the diffusion scheme was studied with extensive numer
experiments. These numerical results show that the obse
rate of convergence of the diffusion scheme is of or
2 at the circumcenters. It is not a contradiction with
theoretical results: it shows that the theoretical rate
convergence is not optimal.

3.8. Discrete approximation at an interface

We first consider meshes where all reference posit
lie in their associated control volume. Consider an interf
y

l
e

d

Fig. 3. Interpolation at an interface.

σK,L, the value forφ at this interface could be approximat
with the linear interpolation

φK,L = (1− tK,L)φK + tKφL

tK,L = (XK − XK,L) · (XL − XK)

(XL − XK) · (XL − XK)

With this linear interpolation, the minimum or the maximu
of the approximative solution is preserved at the interfa
when 0� tK,L � 1. Which is only the case when th
reference positions lie in their associated control volum
(meshes of categoryM1). Unfortunately, the most commo
meshes are those for which there exist reference posi
that do not lie in their associated control volume. This
the case for meshes of categoryM2 (Fig. 3). Preliminary
numerical results showed that the linear interpolation co
make the scheme unstable when thetK,L did not satisfied the
inequality 0� tK,L � 1, which is rather frequent in 3D.

In order to preserve the maxima and the minima of
solution when interpolating a scalar quantity other that
diffusivity at an interface, we use the geometrical averag

φK,L = m(K)φK + m(L)φL

m(K) + m(L)
(20)

where m(K) is the measure of the hyperplaneK (the
volume of the cellK in 3D). Unfortunately, in theory, this
approximation does not give as much precision than
linear interpolation.

3.9. Discrete approximation of the gradient

Since our approximation functions are constant by c
trol volume, the gradient of a function cannot be direc
computed, but only approximated. We first assume that
gradient(∇φ)K of a scalarφ over the volumeK is a con-
stant vector. Let(∇φ · n)K,L be the normal gradient to th
interfaceσK,L (it being a known quantity), we suppose th
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the projection of(∇φ)K over σK,L should be closed to
(∇φ · n)K,L:

(∇φ)K · nK,L ≈ (∇φ · n)K,L (21)

(∇φ · n)K,L = τK,L

m(σK,L)
(φL − φK)

To obtain a closed system of linear equations, (21) is app
to all interfaces which belong the cellK: nK,1

...

nK,n

 (∇φ)K ≈
 (∇φ · n)K,1

...

(∇φ · n)K,n


or, in a more compact way:

N(∇φ)K ≈ (∇φ · n)σ (22)

The solution to this system of equations is the approxima
gradient.

In general, the over-constraint system of Eq. (22) is
compatible. The “best” solution is approximated with a le
square method, the linear system

NtN(∇φ)K = Nt (∇φ · n)σ

being solved. It is worth to mention that this approximat
is used to calculate the pressure gradient in the momen
equations.

There is also a particular case when the control volu
K is a tetrahedron and the gradient of a scalar variab
divergence free:∑
σ∈EK

(∇φ · n)σ = 0

EK being the set of interfacessurrounding the control vol
umeK. Based upon a geometrical property of tetrahed
we have the following linear combination:

0 = ∇φK ·
∑

σ∈EK

m(σ)nσ =
∑

σ∈EK

m(σ)∇φK · nσ

=
∑

σ∈EK

m(σ)(∇φ · n)σ

In this case, given this linear combination, there is
unique solution to (22).

3.10. Discrete equations, convection–diffusion operator
CD

In this section, to discretize the convections–diffus
equations, we put together the operators that were defin
the previous sections. Let us consider the following equa
on the domainΩ :

∂φ

∂t

∣∣∣∣
t=tn+1

+ ∇ · (v(tn+1) ⊗ φ∗) − ∇(
α∇φ∗) = sn (23)

where

• φ can be any scalar variable or the components of
velocity vector;
• ∂φ
∂t

∣∣
t=tn+1

= φn+1−φn

δt
;

• sn is a source term;
• v(tn+1) = 3

2vn − 1
2vn−1

is an approximation ofv at timet = tn+1, it is such that
∇ · v(tn+1) = 0.

The discrete equations are obtained by integrating (23)
each control volumeK and applying the Gauss theorem:∫
K

∂φ

∂t

∣∣∣∣
t=tn+1

dV +
∫

∂K

(
v(tn+1) ⊗ φ∗) · n dS

−
∫

∂K

∇(
α∇φ∗) · n dS =

∫
K

sn dV (24)

The quantitiesφ∗, φn andsn are assumed constant ov
any given volumeK. When both the convective and th
diffusive schemes presented in the previous section
applied to the surface integrals, the discrete equation foK

is given by this expression:

m(K)
∂φ

∂t

∣∣∣∣
t=tn+1

+
∑

σ∈EK

m(σ)vσ φ∗
σ,+

−
∑

σ∈EK

ασ τσ

(
φ∗

L − φ∗
K

) = m(K)sn
K (25)

where EK is the set of interfaces which belong to t
boundary of volumeK. The system (25) is linear but no
symmetric and the associated matrix is a diagonal domi
M-matrix. This imply thatA−1 has all its coefficients greate
or equal to zero and as a consequence, for suitable so
terms sK (sK = 0, for example), the discrete maximu
principle will hold forφK .

The system (25) is used to solve all scalar variab
The solution of this system will be denoted asφ∗

K =
CD(φn

K). Thanks to the time discretization, the compone
of the velocity vector are solved in a decouple man
Therefore, the convection and diffusion of the velocity fie
vn can be considered as the convection and diffusion o
three components:v∗

K = CD(vn
K). It is worth mentioning

that for the momentum equations, the source term for
components of the velocity vector takes into account
pressure gradient:

sn
K = fnK − (∇P)nK

fnK being the discrete approximation of a force on the con
volumeK and(∇P)nK the pressure gradient overK. When
convecting and diffusing the velocity field, the solutionv∗ is
not divergence free and a projection has to be made.

3.11. Projection

In order to compute a velocity field that fulfills th
incompressibility constraint, a projection has to be mad
is a combination of two operators: the extension operatE
and the projection operatorP . The goal of the first operato
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is to compute an intermediate normal component of
cell velocity on the cell interfaces. The projection opera
computes both an update of the pressure and the no
component of the cell velocity field at the cell interfaces. T
update of the normal velocity field is latter used to correct
velocity field within the cells.

3.11.1. Extension operatorE
This operator is applied on each interface of the con

volumes to compute an intermediate normal velocity(v ·
n)

n+1/2
σ :

E :
(
vn+1/2
K ,vn

K

) 
→ (
(v · n)n+1/2

σ

)
To define this operator, we make the assumption that
variation of the normal velocity component must agree w
the variation of the cell velocity computed in the predic
step. To interpolate the variation of the normal velocity,
use the geometrical average:

(v · n)
n+1/2
K,L = (v · n)nK,L

+ [m(K)δvK + m(L)δvL] · nK,L

m(K) + m(L)
(26)

δv = vn+1/2 − vn

When σK,b lies on the domain boundary, the intermedi
normal velocity is computed with this expression:

(v · n)
n+1/2
K,b = vn

K,b + δvK · nK,b (27)

It is worth to mention that the boundary condition f
the normal velocity must not be considered at this sta
If it were so, it would be possible to construct a no
constant velocity field for which the discrete divergen
approximation would be zero. In this case, the solut
would exhibit spurious pressure oscillations that have
physical meaning (false pressure modes).

Later on, the computation of the velocity fieldvn+1/2

with the extension operator will be denoted as:

(v · n)n+1/2
σ = E

(
vn+1/2,vn

K

)
(28)

3.11.2. Projection operatorP
The projection operator actually computes a velocity fi

that is divergence free, it is applied to both the pressure
the velocity

P :
(
Pn

K, (v · n)n+1/2
σ

) 
→ (
Pn+1

K ,vn+1
K

)
(29)

and it is carried out in two steps. Eq. (7) is first written un
this form:

vn+1 = −δtβ∇(
δPn+1) + vn+1/2 (30)

This expression is then substituted into the continuity eq
tion, which is then discretized:

βδt
∑

σ∈EK

m(σ)
(∇δPn+1 · n

)
σ

=
∑

m(σ)(v · n)n+1/2
σ (31)
σ∈EK
l

The solution to Eq. (31) gives the correction to the press
field. As for the correction of the velocity field on the ce
interfaces, it is given by Eq. (30). Which is discretized as

vn+1
σ = −δtβ

τσ

m(σ)
(δPL − δPK) + vn+1/2

σ (32)

on the cell interfaces.
Before solving (31), appropriate boundary conditio

have to be given. When the normal velocityvK,b is imposed
(at an inlet, a wall or on a symmetry plane), the followi
Neumann boundary condition holds:

δtβ∇(
δPn+1) · n = v

n+1/2
K,b − vK,b (33)

The only other case considered is an imposed pressure
as at an outlet). In this case, the boundary condition for
pressure correction is a Dirichlet boundary condition:

δPn+1
K,b = g

(
XK,b, t

n+1) − g
(
XK,b, t

n
)

(34)

whereg(XK,b, t
n+1) is the given pressure at timet = tn+1

at the positionXK,b associated to cellσK,b of volumeK.
After updating the velocity at all interfaces, a veloc

correction is also made on the cells. LetσK,L be an interface
between the cellsK and L, this last correction has to b
compatible with the velocity update that has been mad
this interface:(
vn+1 − vn+1/2)

K
· nK,L

= WK,L

[
(v · n)n+1

K,L − (v · n)
n+1/2
K,L

]
(35)

whereWK,L is a parameter such that

WK,L =
{

big number
(
i.e., 106

)
σK,L ∈ wall

1 otherwise

For each control volumeK, a linear system of equation
is built by applying (35) to all interfaces which belong
K. This linear system can be inconsistent, its solution
always approximated with a least square method. In o
to make sure that the cell velocity always agrees with
adjacent wall boundary condition, the parameterW had to
be introduced.

Both the velocity-pressure formulation and the project
operator fall into the same class than the operators prese
in [18]. Hence, the proof of the unicity of the solution for t
pressure given in [18] also applies to this scheme.

Finally, the application of the projection operator on t
intermediate velocity field(v · n)

n+1/2
σ and the pressurePn

K

will be denoted as:(
Pn+1

K ,vn+1
K

) =P
(
Pn

K, (v · n)n+1/2
σ

)
(36)

We end this section by making a short remark for
special case where there are no macro-elements. Fo
type of mesh, all control volumes are tetrahedras an
is possible to use the zero degree Raviart–Thomas fi
element which contains the following polynomials [19,20

a + dx

b + dy

c + dz

 , ∀(a, b, c) ∈ �3
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With this family of elements, it is possible to compute
velocity fieldvK which satisfies the following equations:

vK · nK,L = −vL · nL,K∑
σ∈EK

vK · nσ = 0 (37)

Then, it is possible to use an extension and a projec
operators for which the normal components of the
velocity field on each interface is continuous and satis
the divergence free constraint [9,10,21]. For our sche
where macro-elements are frequent, it is not the case
normal components of the cell velocity field cannot direc
be computed from the cell velocity and we do not make
of the Raviart–Thomas finite elements.

3.12. The complete algorithm

We end this first part of the article by giving the who
algorithm for solving the Navier–Stokes equations coup
with other scalar transport equations such as the en
equation. We always use a start-up step and care mu
given to the notation for the initial step:

• v−1
K stands for an initial velocity field which is alway

null;
• v−1/2

K is the initial condition for the velocity field;
• P−1

K is the initial condition for the pressure;
• φ0

K is the initial condition forthe scalar variables.

The algorithm is as follows:

• Given the initial conditionv−1
K = 0,v−1/2

K ,P−1
K andφ0

K ,
apply the extension and the projection operators:

(v · n)−1/2
σ = E

(
v−1
K ,v−1/2

K

)(
P 0

K,v0
K

) =P
(
P−1

K , (v · n)−1/2
σ

)
• Given a solutionvn,P n andφn,

(1) apply the convection–diffusion operator to all co
ponents of the velocity vector:

vn+1/2
K = CD

(
vn
K

)
(2) apply the extension and the projection operators

(v · n)n−1/2
σ = E

(
vn+1/2
K ,vn

K

)(
Pn+1

K ,vn+1
K

) =P
(
Pn

K, (v · n)n−1/2
σ

)
(3) apply the convection–diffusion operator to all sca

quantities:

φn+1
K = CD

(
φn

K

)
4. Numerical results

In this section, we present some numerical tests that w
conducted to validate this numerical scheme. All comp
e

tions were carried out in three dimensional domains, e
for the 2D flows.

Before showing our results, we must say a few wo
about the resolution of the systems of discrete of equati
First, we recall that these systems of equations are li
and the scheme does not require any non-linear solve
speed-up the computations, we always store the matr
coefficients associated to the discrete systems of equa
In this paper, all results were obtain using the Orthom
algorithm. This algorithm is not as known as the conjug
gradient. It requires more operations (one matrix vec
multiplication by iteration), but does not need the line
system to be symmetric. We compared the performa
of this algorithm to GMRES and the conjugate gradie
For the problems we considered, Orthomin2 was a be
choice than the others or the combination GMRES-
(conjugate gradient for the symmetric systems associ
the projection operator and GMRES for the other lin
systems). As for the preconditioner, we only used a sim
Jacobi diagonal preconditioner. For more information
these solvers, see [22].

For all problems, we give plots of the convergen
history for the computations made on the finest grids.
goal is to verify the consistency of the extension-projec
operator. A contradiction between convergence histories
the variations of variables and the residuals would sh
that the solution computed after the projection does
satisfy the Navier–Stokes equations. Thus showing tha
projection operator is not appropriate.

4.1. Natural Convection in a square cavity

This problem deals with a confined Boussinesq 2D fl
flow in a square cavity. The free convection originates fr
buoyancy forces due to a fluid density gradient. We cons
the body forceg(ρ∞ − ρ) whereg is the local acceleratio
andρ∞ is the density for a reference state. For an inco
pressible flow with small temperature gradients, this fo
can be approximated with theBoussinesqapproximation

g(ρ∞ − ρ) 
 gρ∞β(T − T∞)

whereβ is the volumetric thermal expansion coefficient a
T∞ the temperature for the reference state. This source
is added to the momentum equations to model the b
force.

We carried out computations for a fluid of Prandt num
0.71 and Rayleigh number of 106. The details for the set u
for this problem are presented thereafter.

Domain:

[0.0,0.1]× [0.0,1.0]× [0.0,1.0]
Boundary conditions:

v · n|∂Ω = 0, v · τ |∂Ω = 0

T (y = 0, z) = 0, T (y = L,z) = 1



842 S. Perron et al. / International Journal of Thermal Sciences 43 (2004) 833–848

et
ors
rde
ities
are

rder
ree
254
own
ch
ut a

he
heir
vis
by
ad,

selt
trol

he

flux

ent
law
eme.
the
me.
m-
with
ence

wo
its
is

ere

w is
ates
red
∂T

∂n

∣∣∣∣
z=0,z=L

= 0

Initial condition:v(x) = 0 , P(x) = 0 , T (x) = 0
Physical properties and dimensions:

Ra= ρ‖g‖�T L3

kµ
= 106, Pr = µ

cpk
= 0.71

ρ = 1.0, = 1, L = 1.0, µ = 0.71

We recall thatk is the thermal conductivity andcp the
specific heat at constant pressure.
Time step:

δt = 0.1

Convergence criteria:∣∣vn+1 − vn
∣∣∞ < 1× 10−2 and∣∣wn+1 − wn
∣∣∞ < 1× 10−2

This problem has been studied in details by Vahl Davis
al. ([23,24] for different Rayleigh numbers). These auth
solved this problem on several meshes with a second o
difference method and extrapolated reference quant
with Richardson’s extrapolation. Hence, our results

Fig. 4. 2D Boussinesq flow: coarsest mesh (902 cells).
r

compared to those obtain by others with a second o
discretization scheme. We solved this problem on th
different unstructured meshes made of 902, 3656 and 8
control volumes (a plane cut of the coarsest mesh is sh
in Fig. 4). Two simulations were carried out for ea
meshes: one with the power-law scheme, the other witho
correction of the diffusion coefficient.

In Table 1, we compare the maximum value of t
velocity components on the mid-plane sections and t
locations to the benchmark values published by Vahl Da
et al. Our functions of approximation being constant
control volume, we do not give an exact location. Inste
we give the interval in which they are located.

In Table 2, we present the maximum value of the Nus
number and its average on the hot wall. For each con
volumeK adjacent to the hot wall, the approximation of t
Nusselt number was computed as follows:

NuK = LrefkK

kref�Tref
· TσK − TK

‖Xσ − XK‖
where, in this case,Lref = 1, kref = 1,�Tref = 1. For the
Nusselt number, we give the exact location where the
was computed.

For all benchmark quantities, systematic grid refinem
lead to more accurate results. Moreover, the power
scheme gave more accurate results than the upwind sch
For all further computations presented in this paper,
power-law scheme is preferred to the simple upwind sche

In Figs. 5 and 6, we show plane cuts of the velocity co
ponents and the temperature for the solution obtained
the finest grid and the power-law scheme. The converg
history for this solution is shown on Fig. 7.

4.2. 2D flow around a cylinder

This problem deals with an internal flow between t
parallel planes. A cylinder is present near the inlet and
center is slightly above the mid-section. Hence, the flow
not symmetric and lift is produced. The computations w
carried out for the Reynolds numberRe= 20. For such a low
Reynolds number, there is no vortex shedding and the flo
permanent. It is not a thermal flow. Nevertheless, it evalu
the capacity of the scheme for computing, on unstructu
Table 1
2D Boussinesq flow: maximum velocitycomponents at mid-plane sections

Our results Power-law wmax vmax
scheme z = 1/2 y = 1/2

902 cells no 215.12y ∈ [0.0002,0.0433] 72.46,z ∈ [0.827,0.870]
902 cells yes 217.58y ∈ [0.0002,0.0433] 66.89,z ∈ [0.827,0.870]
3656 cells no 217.11,y ∈ [0.0431,0.0433] 69.99,z ∈ [0.870,0.870]
3656 cells yes 218.83,y ∈ [0.0416,0.0433] 65.89,z ∈ [0.848,0.868]
8254 cells no 217.82,y ∈ [0.029,0.433] 68.095,z ∈ [0.855,0.856]
8254 cells yes 219.34,y ∈ [0.029,0.433] 65.74,z ∈ [0.855,0.856]
Reference solution 219.36,y = 0.0379 64.63,z = 0.850
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Fig. 5. 2D Boussinesq flow: Comparative results, velocity components on the mid-planesy = 1/2 andz = 1/2.
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Table 2
2D Boussinesq flow: maximum and average Nusselt number at the ho

Our results Power-law Numax Nu
scheme

902 cells no 22.419,y = 0.0750 11.152
902 cells yes 20.785,y = 0.0750 10.632
3656 cells no 20.077,y = 0.0375 9.883
3656 cells yes 19.086,y = 0.0375 9.374
8254 cells no 18.712,y = 0.0417 9.521
8254 cells yes 18.443,y = 0.0417 9.105

Reference solution 17.925,y = 0.0378 8.800

non-orthogonal meshes, quantities related to the diffu
flux. The set-up for this problem is as follows:

Domain:

[0.0,0.1]× [0.0,2.2]× [0.0,0.41],
see Fig. 8.
Boundary conditions:

Inlet:

v(x, y = 0, z) = 4 · va · (H − z)

H 2

w(x,y = 0, z) = 0

Outlet:

∂v

∂n

∣∣∣∣
x,y,z=2.2

= 0

w(x,y = 2.2, z) = 0

P(x, y = 2.2, z) = 0

Walls:

v · n = 0, v · τ = 0

Initial condition:

v(x) = 0, P (x) = 0
Fig. 6. 2D Boussinesq flow: Comparative results, temperature on
mid-plane sectionz = 1/2.

Physical properties:

Re= vaD

ν
= 20, va = 0.2, D = 0.1

Time step:

δt = 0.05

Convergence criteria:∣∣vn+1 − wn
∣∣∞ < 1× 10−5 and∣∣vn+1 − wn
∣∣∞ < 1× 10−5

For this problem, we compare our results to benchm
quantities published by Turek et al. [25]. In this report,
drag, lift and difference of pressure between two positi
on the disc are given. The following quantities are provid
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Fig. 7. 2D Boussinesq flow: Convergence, the graph on the left shows the norms of the variations|φn+1 − φn|∞, the norms‖φn+1 − φn‖
L2 of the residuals

are shown on the right.
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Fig. 8. 2D flow around a cylinder: Geometry.

(1) drag coefficient:

CD = 2 · FD

ρv2
aDHL

FD =
∫
∂S

(
0, ν

∂vτ

∂n
,P

)
· τ dA

(2) lift coefficient:

CL = 2 · FL

ρv2
aDHL

FL = −
∫
∂S

(
0, ν

∂vτ

∂n
,P

)
· n dA

(3) pressure difference:

�P = P(0,0.15,0.2) − P(0,0.25,0.2)

where:

• L = 0.10 is the depth in the 3rd dimension (the flo
being solved in a 3D domain);

• τ is a tangent vector to the cylinder surface;
• vτ = v · τ is the tangential speed at the cylinder surfa
• n is the unit normal vector to the surface cylinder;
• ∂S is the area of the cylinder.
Table 3
2D flow around a cylinder: Maximum drag, lift and other comparative
results

Cells CD CL �P

16933 5.58 0.0073 0.119
36724 5.58 0.0124 0.117
49231 5.58 0.0118 0.116

Benchmark quantities 5.57–5.59 0.0104–0.0110 0.1172–0.11

In order to show that we are able to obtain a solution wh
is independent from the grid size, computations were car
out on three different meshes. The benchmark quant
provided by Turek et al. [25] and our results are presen
in Table 3.

We were able to predict the drag coefficient accurately fo
all three meshes. As for the lift, the difference between
results and the reference quantities diminish as we refine
grid. Finally, for the pressure difference, the value given
our scheme is slightly below the benchmark result. We g
the convergence history for the finest mesh in Fig. 9.

4.3. 3D thermal flow in a cylinder

This problem deals with a forced thermal flow in
cylinder. The temperature is imposed both at the inlet
on the cylinder’s surface. The flow is not developed at
inlet, a constant velocity being imposed at this location.
the data needed to solve this problem are presented bel

Domain:

∂Ω =
 x(θ)

y(θ)

z

 =
 0.05· cos(θ)

0.05· sin(θ)

z


0 � θ � π/2, 0 � z � 1.2

Boundary conditions:
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Fig. 9. 2D flow around a cylinder: Convergence, the graph on the left shows the norms of the variations|φn+1 − φn|∞, the norms‖φn+1 − φn‖
L2 of the

residuals are shown on the right.
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Inlet:

u(x, y, z = 0) = 0, v(x, y, z = 0) = 0

w(x,y, z = 0) = 1, T (x, y, z = 0) = 1

Outlet:

u(x, y, z = 1.2) = v(x, y, z = 1.2) = 0
∂w

∂n

∣∣∣∣
z=1.2

= 0 P(x, y, z = 1.2) = 0,
∂T

∂n

∣∣∣∣
z=1.2

= 0

Walls:

v · n = 0, v · τ = 0, T = 0

Initial condition:

v(x) = 0, P (x) = 0, T (x) = 0

Physical properties and dimensions:

ReD = wmD

ν
= 120, wa = 1.0

Pr = νcp

k
= 1.0, D = 0.1, cp = 1.0

Time step:

δt = 0.1

Convergence criteria:∣∣wn+1 − wn
∣∣∞ < 1× 10−5

wa is the average of the speed for a section of the duct anD

the diameter. This flow being symmetric, the computati
were carried out only on one quarter of the domain. T
3D meshes were built using the extrusion of 2D mes
composed of triangles. The grids were made of 40, 60
80 sections, respectively.

For this flow, there is an analytical solution in the reg
of the domain where the flow is fully developed. For
laminar flow,ReD � 2300, the location at which the flow
starts to be fully developed is approximated as follows:(

L

D

)
lam

≈ 0.05ReD

In this region, the velocity componentw and the pressur
gradient can be computed with these equations:

w
(
r =

√
x2 + y2

)
= − 1

4µ

∂P

∂z

(
D

2

)2(
1−

(
r

D/2

)2)
(38)

∂P

∂z
= −8 · µ · wm

(D/2)2 (39)

As for the temperature, the length at which the flow
thermally developed is given by the empirical expression(

L

D

)
lam,T

≈ 0.05ReD · Pr

In this region, we do not have an exact solution for
temperature. Nevertheless, in this part of the domain, t
is no variation along the cylinder of the dimensionle
temperature:

∂

∂z

(
Ts − T (x)

Ts − Tm(z)

)
= 0, (40)

Tm(z) being the mean axial temperature in a given sect
For each cross section area, this mean axial temperature
often called mixed mean fluidtemperature and is defined
(see Kays [27]):

Tm = 1

Acwa

∫
Ac

w(x)T (x)dS

Ac being the area of a cross section.
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There is another important result for thermally develop
flow in a circular tube, it can be shown that the Nuss
number at the surface is constant [27]:

NuD = 3.657

For the computation ofNuD , the length of reference i
Lref = D = 0.1 and the reference temperature is the m
axial temperature.

In order to verify the convergence behavior of our sche
toward the exact solution, we computed some estimate
the error for the velocity, pressure gradient and Nus
number in the last section of the duct.

For all these variables, theL2 norm

‖e‖L2 =
√∑

K

m(K)
(
φK − φ(XK)

)2

Table 4
Thermal flow in a cylinder, norm‖φK − φ(XK)‖L2 of the error

Variable hm/hm−1 w
∂p
∂z Nu

cells

29080 7.75−6 4.72−5 2.89−4

67500 0.667 3.50−6 3.76−5 1.95−4

‖em‖L2
‖em−1‖L2

0.452 0.796 0.675

133200 0.750 2.77−6 2.91−5 1.37−4

‖em‖L2
‖em−1‖L2

0.791 0.774 0.703

Table 5
Thermal flow in a cylinder, statistics

Statistics Iterations Time Time per Memory usag
unknowns (seconds) iteration (megabytes)

145400 84 1612 19.2 67
337500 95 4688 49.3 150
666000 134 12526 93.5 294
was computed. Those norms are given in Table 4. We
provide the following ratios:

(1) hm/hm−1, the ratio between the diameters of the larg
cell of meshm and meshm − 1;

(2) ‖em‖L2/‖em−1‖L2, the ratio between the norms of th
error for meshm and meshm − 1.

In Section 3.7.1 we gave an error estimate for the convec
diffusion operator. We also recall that theL2 norm of this
error estimate depends on the diameter of the largest ce
this case, the results given in Table 4 show that the obse
rate of convergenceagrees with the theoretical results. M
over, for the problem we considered, the rate of converge
of the approximative flux is also of the same order.

Fig. 10. Thermal flow in a cylinder: Velocity profile near the outlet.
Fig. 11. Thermal flow in a cylinder: Convergence, the graph on the left shows the norms of the variations|φn+1 − φn|∞, the norms‖φn+1 − φn‖
L2 of the

residuals are shown on the right.
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In Fig. 10, we show that there is no significant differen
between the computed velocity componentw and the ana
lytical solution given by Eq. (38). As for the other problem
we show the convergence curves for the simulation on
finest grid in Fig. 11.

In Table 5, we provide some statistics relative to
performance of the computer code. We believe that th
statistics are relevant to those who want to compare t
code with others. This computer code was written in C
and all the real numbers were stored in double preci
format. All the problems considered in this paper w
ran on a single processor PC equipped with AMD10
thunderbird. We must say that those statistics show one
behavior of the computer code: the number of time st
needed to reach convergence grows with the numbe
unknowns. Hence, the time taken to solve a problem d
grow linearly with the number of unknowns. This behav
is mainly caused by the deterioration of the conditioning
the matrix associated to the projection operator (we reca
that the projection operator requires solving a Laplac
equation). It can be shown that the condition number of
matrix associated to the discretized Laplacian equatio
inversely proportional to the diameterh of the mesh [22].
Hence, the time needed to solve this system of equat
increases as the mesh size decreases. This behav
not unique to our scheme: it is one of the drawbacks
all incompressible flow solvers that use a projection, t
includes SIMPLEs family of algorithms [28].

5. Conclusion

A numerical method has been proposed to solve
Navier–Stokes equations for incompressible thermal fl
and the convection–diffusionof scalar quantities. This so
is based upon a fractional step scheme and the finite
ume cell centered method on unstructured meshes. On
its main characteristics is the usage of the cell-circumcen
to store the unknowns. This leads to a very simple diffus
scheme on non-orthogonalunstructured meshes. By com
ing together elements of the mesh to form new cells,
scheme can be used on general unstructured meshes t
not satisfy the Delaunay condition. This solver allows
local conservation of mass and scalar quantities and the
merical preservation of the maximum principle for sca
quantities. However, in its present form, the scheme is
optimal for meshes where many elements have high-as
ratios. Thereby, the extension to Navier–Stokes compr
ible flows where shocks needadapted meshes aligned wi
contact discontinuities and shocks is not straightforward

The convection–diffusion scheme is very robust and e
to implement. Being of order one, it is a low order schem
Nevertheless, the convection scheme accuracy’s coul
improved with a more sophisticated reconstruction met
such as MUSCL.
is

f

-

o

-

t
-

Numerical solutions for laminar steady flows were p
sented. For all cases, the solutions computed with
scheme were in good agreement with those presente
other researchers or exact solutions. For all problems, r
ence quantities associated with the diffusion flux were c
puted on non-orthogonal grids. To show that the solu
computed after the projection satisfies the Navier–Sto
equations, we gave the convergence curves for both the
ations of the variables and the residuals. This schem
under active development, numerical results for a turbu
flow using thek–ε model have already been presented in [
26]. Current developments of the scheme include: a sec
order approximation of the convection flux, more exhaus
computations of turbulent flows with heat transfer and an
tension to compressible flows.
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